1 Newton's Method

1.1 Concepts

1. Newton's method helps us approximate the zeros of a function $f(x)$. It is a recursive process in that we start with some guess $x=x_{0}$, then use Newton's method to give us a better guess x_{1}, and we can do this over and over again to get better and better guesses. The equation is

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} .
$$

1.2 Problems

2. Use Newton's method with two steps to estimate $\sqrt{5}$.

Solution: We want to find the root of $x^{2}-5=0$. The first guess is $x=2$ and the next point is

$$
x^{\prime}=2-\frac{-1}{4}=\frac{9}{4} .
$$

Doing that again, we get that the next point is

$$
x^{\prime}=\frac{9}{4}-\frac{81 / 16-5}{9 / 2} \approx 2.2361
$$

The real answer is approximately 2.23607 .
3. Use Newton's method to estimate $\sqrt[4]{16.32}$.

Solution: This value is a root of $x^{4}-16.32=0$. We can start at $x=2$ and using Newton's method gives us

$$
x^{\prime}=x-\frac{f(x)}{f^{\prime}(x)}=2-\frac{-.32}{4 \cdot 2^{3}}=2+0.01=2.01
$$

The real answer is about 2.0099.
4. Find the critical points of $g(x)=\sin (x)-x^{2}$

Solution: We want to find when the derivative is 0 or when $f(x)=\cos (x)-2 x=0$. Taking the derivative again, we find that it is $-\sin (x)-2<0$ for all x. So this function is always decreasing and has a unique root. We plug in $x=0$ to start, then calculate

$$
x^{\prime}=x-\frac{f(x)}{f^{\prime}(x)}=-\frac{1}{-2}=\frac{1}{2} .
$$

The real solution is ≈ 0.45.
5. Use Newton's method to estimate $\sqrt[3]{28}$.

Solution: We want to find the root of $x^{3}-28$. We guess $x=3$ and get that the next point is

$$
x^{\prime}=x-\frac{f(x)}{f^{\prime}(x)}=3-\frac{-1}{27}=\frac{82}{27} \approx 3.037 .
$$

The real solution is ≈ 3.0366.
6. Find the critical points of $e^{x}+x^{2}$.

Solution: The critical points are when the derivative is 0 so $f(x)=e^{x}+2 x=0$. Taking the second derivative, we have that $f^{\prime}(x)=e^{x}+2>0$ so this is an always increasing function. Therefore, it will only have 1 zero. We plug in the only value that we know of $x=0$ and get

$$
x^{\prime}=x-\frac{f(x)}{f^{\prime}(x)}=0-\frac{1}{3}=-\frac{1}{3} .
$$

The real solution is ≈-0.35.
7. Find when $\cos x=x$.

Solution: Notice that when taking the derivative of $\cos x-x$, we get $\sin x-1 \leq 0$ so this is a decreasing function which has at most on zero. We start at $x=0$ to get the next point

$$
x^{\prime}=x-\frac{f(x)}{f^{\prime}(x)}=0-\frac{1}{-1}=1 .
$$

The real solution is ≈ 0.739.
8. Find the roots of $f(x)=x^{3}-x+1$.

Solution: Taking the derivative, we get that the derivative is $3 x^{2}-1$. This has roots at $\pm 1 / \sqrt{3}$. When we plug in $1 / \sqrt{3}$, we get that $f(1 / \sqrt{3})=1-2 / 3 \sqrt{3}>0$. Thus, this function only has one zero because the local minimum at $x=1 / \sqrt{3}$ is positive. Since $x=-1 / \sqrt{3}$ is a local maximum, we know that the zero must be $<-1 / \sqrt{3}$. We can start by guessing $x=-2$. The formula for Newton's method gives us

$$
x_{n}=x_{n-1}-\frac{f\left(x_{n-1}\right)}{f^{\prime}\left(x_{n-1}\right)}=x-\frac{3 x^{2}-1}{x^{3}-x+1} .
$$

Plugging in $x=-2$ gives us $\frac{-17}{11}$. So the root is approximately -1.5454 , the real root is -1.32 .
9. Use Newton's method to estimate $2^{0.1}$.

Solution: We can rewrite this as $2^{1 / 10}$ so we want to find a root of $x^{1} 0-2=0$. Using Newton's method with a guess of 1 gives us

$$
x^{\prime}=1-\frac{-1}{10}=1.1
$$

The real answer is ≈ 1.0718.

